
Degrees that are low for isomorphism

Johanna N.Y. Franklin
University of Connecticut

Reed Solomon
University of Connecticut

September 12, 2013

Abstract

We say that a degree is low for isomorphism if, whenever it can compute an isomor-
phism between a pair of computable structures, there is already a computable isomor-
phism between them. We show that while there is no clear-cut relationship between
this property and other properties related to computational weakness, the low-for-
isomorphism degrees contain all Cohen 2-generics and are disjoint from the Martin-Löf
randoms. We also consider lowness for isomorphism with respect to the class of linear
orders.

1 Introduction

Within classical computability theory, there are many ways to specify that a particular set
A or Turing degree d is computationally weak. For example, minimal degrees, low degrees
and hyperimmune-free degrees are each computationally weak in an appropriate sense. More
recently, there has been considerable interest in sets (or degrees) which are low for P for
various relativizable notions P . Roughly, a set A is low for P if the relativized notion PA
is the same as P . For example, A is low for Martin-Löf randomness if the collection of sets
which are Martin-Löf random relative to A is the same collection of sets which are Martin-Löf
random. (See [7] and Chapter 5 of Nies [13] for additional examples and motivation.)

In this paper, we examine a lowness notion in computable model theory which is related to
the study of degrees of categoricity. We begin with a summary of definitions from computable
model theory to fix our notation.

For a degree d and computable structures A and B, we say A is d-computably isomorphic
to B, denoted A ∼=d B, if there is an isomorphism between A and B which is computable from
d. If d = 0, we say A is computably isomorphic to B and write A ∼=∆0

1
B. A computable

structure A is d-computably categorical if for every computable structure B which is classically
isomorphic to A, we have A ∼=d B.

Definition 1.1. A degree d is a degree of categoricity if there is a computable structure A
such that A is c-computably categorical if and only if c ≥ d.

1

Fokina, Kalimullin and Miller [6] introduced degrees of categoricity. They showed that
every degree which is d.c.e. in and above 0(n) is a degree of categoricity and that 0(ω) is a
degree of categoricity. Csima, Franklin and Shore [4] extended these results to show that
for every computable ordinal α, 0(α) is a degree of categoricity and for every computable
successor ordinal α, each degree d.c.e. in and above 0(α) is a degree of categoricity. In the
negative direction, Csima, Franklin and Shore proved that every degree of categoricity is
hyperarithmetic and hence that there are only countably many degrees of categoricity.

Anderson and Csima [1] continued working in a negative direction and developed several
methods to show that certain types of degrees are not degrees of categoricity. In particular,
they gave an alternate proof that there are only countably many degrees of categoricity and
proved that every noncomputable hyperimmune-free degree is not a degree of categoricity.

More importantly for our current work, Anderson and Csima gave an oracle construction
of a noncomputable degree d ≤ 0′′ which is not a degree of categoricity by showing that for
every pair of isomorphic computable structures A and B, if A ∼=d B, then A ∼=∆0

1
B. Such

a degree d is computationally weak in the sense that d can only tell that two computable
structures are isomorphic when these structures are in fact computably isomorphic. We isolate
this property and refer to such degrees as being low for isomorphism.

Definition 1.2. A degree d is low for isomorphism if for every pair of computable structures
A and B, A ∼=d B if and only if A ∼=∆0

1
B.

Anderson and Csima’s oracle construction of a low-for-isomorphism degree can be recast as
a forcing construction. In Section 2, we use three different forcing notions to construct low-for-
isomorphism degrees and compare these degrees with other notions of computationally weak
degrees. In the cases of Mathias forcing and Cohen forcing, the fact that sufficiently generic
degrees are low for isomorphism follows from work by Hirschfeldt and Shore [9] and Hirschfeldt,
Shore and Slaman [10]. The fact that Sacks forcing also produces low-for-isomorphism degrees
does not appear to be in the literature, but it is a minor modification and has been observed
by several people. We include a proof here for the sake of completeness.

In Section 3, we give examples of degrees which are not low for isomorphism. In particular,
we show that if d can compute a noncomputable ∆0

2 degree or can compute a separating set
for a pair of computably inseparable c.e. sets, then d is not low for isomorphism.

If d 6= 0 is low for isomorphism, then d is not a degree of categoricity because any com-
putable structure which is d-computable categorical is also computably categorical. However,
the converse is not true because the degrees of categoricity are not closed upwards while the
degrees which are not low for isomorphism are closed upwards. More specifically, Ander-
son and Csima show that every noncomputable hyperimmune-free degree is not a degree of
categoricity, but it follows from the examples in Section 3 that there are hyperimmune-free
degrees which are not low for isomorphism.

In Section 4, we consider the measure of the class of all sets which have low-for-isomorphism
degree. Because this class is a Borel tailset, Kolmogorov’s 0-1 Law implies that it must have
measure 0 or 1. (See Barmpalias, Day and Lewis [2] for background on measure theoretic
arguments in classical recursion theory.) We show that this class has measure 0 and that no
Martin-Löf random degree can be low for isomorphism.

2

Finally, we will conclude with a brief discussion and some questions.
When working with the notion of lowness for isomorphism, it is convenient to work with

computable structures in a fixed computable language rather than considering all computable
structures across any computable language.

Proposition 1.3. A degree d is low for isomorphism if and only if for every pair of computable
directed graphs G0 and G1, G0

∼=d G1 if and only if G0
∼=∆0

1
G1.

Proof. Hirschfeldt, Khoussainov, Shore and Slinko [8] gave an effective method of coding an
arbitrary countable structure A in a computable language into a countable directed graph
G(A) with the following properties.

• A ∼= B if and only if G(A) ∼= G(A).

• A is computable if and only if G(A) is computable.

• If A and B are computable, then for any Turing degree d, A ∼=d B if and only if
G(A) ∼=d G(B).

The proposition follows immediately from this coding.

Hirschfeldt, Khoussainov, Shore and Slinko actually showed that there are several classes
of universal structures in this sense and one could work with any of them in the context
of low-for-isomorphism degrees. We choose directed graphs for convenience. However, this
restriction to directed graphs raises the natural question of what happens if one restricts to a
class of structures (such as linear orders, Boolean algebras or abelian groups) which are not
universal in the sense described by Hirschfeldt, Khoussainov, Shore and Slinko [8].

Definition 1.4. Let C be a class of computable algebraic structures closed under isomorphism
within the class of all computable structures. A degree d is low for C-isomorphism if for every
pairs of structures A,B ∈ C, A ∼=d B if and only if A ∼=∆0

1
B.

In Section 5, we consider the low-for-L-isomorphism degrees where L is the class of com-
putable linear orders. We replicate the negative results from Section 3 within this class of
degrees, but leave open the question of whether every low-for-L-isomorphism degree is low
for isomorphism.

2 Degrees which are low for isomorphism

In this section, we use Cohen, Mathias and Sacks forcing to construct low-for-isomorphism
degrees. In the cases of Cohen and Mathias forcing, these facts follow immediately from
known results about forcing for models of second order arithmetic. We assume familiarity
with Cohen and Mathias forcing notions in recursion theory and refer the reader to Jockusch
[11] and Cholak, Dzhafarov, Hirst and Slaman [3] for the relevant definitions. Given our
applications, we sketch the background on models of second order arithmetic in the context
of ω-models, although the results hold more generally. Simpson [16] contains a discussion of
models of second order arithmetic and forcing in the more general context of these models.

3

I ⊆ P(ω) is a Turing ideal if I is closed under Turing reducibility and the Turing join.
Given any set A, IA = {X ⊆ ω | X ≤T A} is a Turing ideal and we refer to IA as the ideal
generated by A.

An ω-modelM of RCA0 consists of the standard model of PA (providing the range of the
first order variables) together with a Turing ideal IM (providing the range of the second order
variables). We will abuse notation by equating an ω-modelM of RCA0 with the corresponding
ideal IM. In particular, we say thatM is countable if this ideal is countable, and we letMA

denote the countable ω-model given by the ideal IA.
If M is an ω-model of RCA0 and G is a set, then M[G] denotes the smallest ω-model

containing M and the set G. That is, the ideal corresponding to M[G] is the downward
closure under ≤T of the set {X ⊕G | X ∈M}. In particular, MA[G] =MA⊕G.

LetM be an ω-model of RCA0. There is a Π0
2 formula Φiso(X, Y) with two free set variables

such that for any directed graphs A,B ∈ M and any function f ∈ M, M |= Φiso(A⊕ B, f)
if and only if f is an isomorphism from A to B.

We can now state the relevant facts concerning Cohen and Mathias forcing and apply
these facts in our context.

Theorem 2.1. Let M be a countable ω-model of RCA0 and let Φ(X, Y) be a Σ0
3 formula

with two free set variables such that for some fixed A ∈ M there is no B ∈ M such that
M |= Φ(A,B).

(I) (Hirschfeldt, Shore and Slaman [10]) If G is Cohen 2-generic over M, then there is no
B ∈M[G] such that M[G] |= Φ(A,B).

(II) (Hirschfeldt and Shore [9]) If G is Mathias 2-generic over M, then there is no B ∈
M[G] such that M[G] |= Φ(A,B).

Theorem 2.2. Let A and B be computable directed graphs.

(I) If U and V are sets such that V is Cohen 2-U-generic, then

A ∼=deg(U) B ⇔ A ∼=deg(U⊕V) B.

(II) If U and V are sets such that V is Mathias 2-U-generic, then

A ∼=deg(U) B ⇔ A ∼=deg(U⊕V) B.

Proof. The left-to-right implications are trivial. To prove the right-to-left directions, assume
that A 6∼=deg(U) B. Consider the ω-modelMU of RCA0 generated by U . Because A 6∼=deg(U) B,
there is no f ∈ M such that MU |= Φiso(A ⊕ B, f). Applying Theorem 2.1 (I) or (II),
depending on the type of forcing, we conclude that there is no f ∈ MU [V] = MU⊕V such
that MU⊕V |= Φiso(A⊕ B, f). Hence A 6∼=deg(U⊕V) B as required.

Corollary 2.3. Every Cohen 2-generic degree and every Mathias 2-generic degree is low for
isomorphism. Furthermore, if d is low for isomorphism, then there is a low-for-isomorphism
degree c > d. Furthermore, for any n, we can ensure that c′ ≥ 0(n).

4

Proof. For the first statement, apply Theorem 2.2 with U computable and V any Cohen or
Mathias 2-generic set. For the second statement, fix D ∈ d, let V be Cohen (or Mathias)
2-D-generic and let c = deg(D⊕V). Since V is generic relative to D, c > d. Let A and B be
computable directed graphs. Since d is low for isomorphism, A ∼=∆0

1
B if and only if A ∼=d B.

By Theorem 2.2 (I) (or (II)), A ∼=d B if and only if A ∼=c B. Hence, A ∼=∆0
1
B if and only if

A ∼=c B as required.
To show the last statement, we fix an n and D ∈ d. We will define a sequence of sets

X0 <T X1 <T . . . such that deg(Xn) is low for isomorphism and X ′′n ≤T X ′n+1 for each n. It
will follow that 0(n+1) ≤T X ′n for each n.

We first claim that if Y is 3-X-generic for X-computable Mathias forcing, then the prin-
cipal function of Y , pY , dominates all functions computable in X. To see this, we fix an
index e for which ΦX

e is computable and a condition (F,C). We can X-computably thin C
to a subset C ′ ⊆ C such that the principal function pF∪C′ dominates ΦX

e . Therefore, the set

of conditions (F̂ , Ĉ) for which pF̂∪Ĉ dominates ΦX
e is dense. Since this set of conditions is

also ΣX
3 , every 3-X-generic set for X-computable Mathias forcing must meet each such set of

conditions. Our claim follows because if pF̂∪Ĉ dominates ΦX
e and Y extends (F̂ , Ĉ), then pY

also dominates ΦX
e .

Now the statement follows very quickly. Let X0 = D and assume that we have defined Xn

and that deg(Xn) is low for isomorphism. Let Yn be 3-Xn-generic for Xn-computable Mathias
forcing. By Theorem 2.2, deg(Xn⊕Yn) is low for isomorphism as well. Now Martin’s Theorem
and our claim above show us that (Xn ⊕ Yn)′ ≥T X ′′n, and we set Xn+1 = Xn ⊕ Yn.

From this corollary, we can infer the existence of low-for-isomorphism degrees with certain
properties by appealing to the corresponding results for Cohen and Mathias n-generics for
n ≥ 2. For example, there are ∆0

3 low-for-isomorphism degrees (since there are ∆0
3 Cohen

2-generics), there are low-for-isomorphism degrees which are hyperimmune (since all Cohen
2-generic degrees are hyperimmune), there are low-for-isomorphism degrees which are not min-
imal (since no Cohen 2-generic degree is minimal) and there are low-for-isomorphism degrees
in the jump classes GL1 and GH1 (since Cohen 2-generic degrees are in GL1 and Mathias
2-generic degrees are in GH1). We can even infer the existence of a high low-for-isomorphism
degree. Furthermore, since the low-for-isomorphism degrees are closed downwards, there are
low-for-isomorphism degrees in GL2−GL1 (because every Cohen 2-generic degree bounds a
degree in this class) and in GL3−GL2 (because every Cohen 3-generic degree bounds a degree
in this class).

We turn to Sacks forcing with computable perfect trees to obtain low-for-isomorphism
degrees which are minimal and hyperimmune free. Although various people have observed
that Sacks forcing can be used in this context, there does not appear to be a proof in the
literature. We review the relevant definitions and lemmas, but refer the reader to Chapter
V.5 in Odifreddi [15] for the proofs of the computation lemmas. We use λ to denote the
empty string, α v β to denote that the string α is an initial segment of β and α ∗ β (or α ∗ n
if β = 〈n〉) to denote the concatenation of α and β.

Definition 2.4. Let α, β, γ ∈ 2<ω. We say β and γ split α if α v β, α v γ and β and γ
are incomparable. We say β and γ e-split α if β and γ split α and there is an x such that

5

Φβ
e (x) ↓6= Φγ

e (x) ↓.

Definition 2.5. A computable perfect tree is a computable function T : 2<ω → 2<ω such that
for all σ, T (σ ∗ 0) and T (σ ∗ 1) split T (σ). We say that a string τ is on T if τ = T (σ) for
some σ. We say that a set A is on T if for all n, there is an m ≥ n such that A � m is on T .

Definition 2.6. Let T be a computable perfect tree. S is a computable perfect subtree of T
if S is a computable perfect tree and for all σ, S(σ) = T (τ) for some string τ . For any string
δ, the full subtree of T above δ is the subtree S defined by S(σ) = T (δ ∗ σ) for all σ.

To construct a noncomputable hyperimmune-free degree by forcing with computable per-
fect trees, we use the following two standard lemmas.

Lemma 2.7. For any computable perfect tree T and any index e, there is a computable perfect
subtree S of T such that for all A on S, A 6= Φe.

Lemma 2.8. For any computable perfect tree T and any index e, there is a computable perfect
subtree S of T such that either ΦA

e is not total for all A on S, or ΦA
e is total for all A on

S and Φ
S(σ)
e (n) ↓ for all n ≤ |σ|. In the latter case, for all A on S, ΦA

e is majorized by the

computable function f(n) = max{ΦS(σ)
e (n) | |σ| = n}.

Definition 2.9. A computable perfect tree is e-splitting if for all σ, T (σ ∗ 0) and T (σ ∗ 1)
e-split T (σ).

To construct a minimal degree by forcing with computable perfect trees, we use the fol-
lowing standard lemma.

Lemma 2.10. For any computable perfect tree T and any index e, there is a computable
perfect subtree S of T such that either

• for every A on S, if ΦA
e is total, then ΦA

e is computable, or

• for every A on S, if ΦA
e is total, then A ≤T ΦA

e .

Theorem 2.11. There is a degree d such that d is hyperimmune free, minimal and low for
isomorphism.

Proof. For this construction, we use forcing with perfect trees. We build a (noneffective)
sequence of computable perfect trees

T0 ⊇ T1 ⊇ T2 ⊇ · · ·

such that T0 is the identity tree, Ti+1 is a computable perfect subtree of Ti, and Ti(λ) (Ti+1(λ)
for all i. We set D to be the unique set such that Ti(λ) v D for all i and let d be the degree of
D. We will have four types of requirements in order to make d noncomputable, hyperimmune
free, minimal and low for isomorphism. The first three parts are standard and we mention
them only briefly.

6

To make d noncomputable, hyperimmune free and minimal, we meet the requirements

Diage : D 6= Φe,

HIFreee : ΦD
e is not total or ΦD

e is majorized by a computable function, and

Mine : ΦD
e total → (ΦD

e is computable or D ≤T ΦD
e)

for each e. Depending on which requirement has highest priority at stage s + 1, we apply
Lemma 2.7, 2.8 or 2.10 to Ts to obtain Ts+1.

We must now explain how to force d to be low for isomorphism. Fix a (noneffective) list
(Ai,Bi), i ∈ ω, of all pairs of infinite computable directed graphs. (We assume without loss
of generality that the domains of Ai and Bi are ω.) We meet the requirements

Low〈e,i〉 : If ΦD
e is an isomorphism Ai → Bi, then Ai ∼=∆0

1
Bi.

Assume Low〈e,i〉 is the highest priority requirement left at stage s + 1. Without loss of
generality, we assume that we satisfy the requirement HIFreee before working on Low〈e,i〉 for
any i. If we satisfied HIFreee by guaranteeing that ΦD

e is not total, then Low〈e,i〉 is also
satisfied. Assume we satisfied HIFreee by guaranteeing that ΦD

e is total and majorized by a
computable function. In this case, for all A on Ts, ΦA

e is total. We proceed in two steps.
Step 1. Check (noneffectively) whether there is a string σ and a number n such that

Φ
Ts(σ)
e � n ↓ and Φ

Ts(σ)
e � n is not a partial isomorphism from Ai to Bi. If there is such a string

σ, then define Ts+1 to be the full subtree of Ts above σ, skip Step 2 below and proceed to the

next stage. In this case, for any A on Ts+1 we have that ΦA
e � n = Φ

Ts(σ)
e � n and hence ΦA

e

is not an isomorphism from Ai to Bi. In particular, we have satisfied Low〈e,i〉. If there is no
such string σ, proceed to Step 2.

Step 2. Check (noneffectively) whether there is a string σ and a number m such that for

all strings τ w σ and all numbers x, Φ
Ts(τ)
e (x) 6= m (either by failing to converge or converging

to a number other than m). If there is such a string σ, then define Ts+1 to be the full subtree
of Ts above σ. In this case, we have guaranteed that for each A on Ts+1, m is not in the range
of ΦA

e . Thus, we have satisfied Low〈e,i〉 and can proceed to stage s+ 1.
If there is no such string σ and number m, then we want to define Ts+1 to be a computable

subtree of Ts such that for all A on Ts+1, ΦA
e is onto. We define Ts+1(τ) by induction on the

length of τ . Set Ts+1(λ) = Ts(〈0〉). For the inductive case, assume |τ | = m, Ts+1(τ) is defined
and Ts+1(τ) = Ts(δ). For i ∈ {0, 1}, we computably search for a string σi and a number x

such that δ ∗ i v σi and T
Ts(σi)
e (x) = m. By our case assumptions, this search must terminate.

Set Ts+1(τ ∗ i) = Ts(σi).
It remains to be shown that in this final case we have satisfied Low〈e,i〉. Notice that Ts+1

is a computable perfect tree with the following properties.

• For every A on Ts+1, ΦA
e is total (by our action for HIFreee).

• For every A on Ts+1, ΦA
e is onto (by our failure to find a string σ in Step 2).

• For every string σ and number n, if Φ
Ts+1(σ)
e � (n + 1) ↓, then Φ

Ts+1(σ)
e � (n + 1) is a

partial isomorphism from Ai to Bi (by our failure to find a string σ in Step 1).

7

We claim that there is a computable isomorphism between Ai to Bi, and hence we have
satisfied Low〈e,i〉.

The computable isomorphism is constructed by an effective back-and-forth argument. We
define a computable sequence of finite binary strings σ0 v σ1 v σ2 v · · · and of numbers
n0 < n1 < · · · such that Φ

Ts+1(σi)
e � (ni + 1) ↓. The partial isomorphism at stage i of the

back-and-forth construction is Φ
Ts+1(σi)
e � (ni + 1). To begin, set σ−1 = λ and n−1 = 0.

Suppose we have constructed σj and the next back-and-forth action is to extend our partial
isomorphism to include m in the domain. Let nj+1 = max{m,nj + 1}. Effectively search for

a string τ such that σj v τ and Φ
Ts+1(τ)
e � (nj+1 + 1) ↓. Since ΦA

e is total for all A on Ts+1,

this search must terminate. Moreover, the map given by Φ
Ts+1(τ)
e � (nj+1 + 1) is a partial

isomorphism which is consistent with our current partial isomorphism so we can set σj+1 = τ .
Similarly, if we have constructed σj and the next back-and-forth action is to extend our

partial isomorphism to include m in the range, then effectively search for a string τ and a
number n > nj such that σj v τ , Φ

Ts+1(τ)
e � (n + 1) ↓ and Φ

Ts+1(τ)
e (k) = m for some k ≤ n.

Since ΦA
e is total and onto for all A on Ts+1, this search must terminate. Again, the map

given by Φ
Ts+1(τ)
e � (n+1) is a partial isomorphism which is consistent with our current partial

isomorphism, so we set nj+1 = n and σj+1 = τ . This completes the proof.

3 Degrees which are not low for isomorphism

Having constructed examples of degrees which are low for isomorphism and have various
other properties, we turn to constructing examples which are not low for isomorphism. The
theme connecting these results is that if d bounds a degree containing a set which can be
nicely approximated in some sense, then it should be possible to use this approximation to
diagonalize and build a pair of computable graphs which are not computable isomorphic but
are d-computably isomorphic.

Theorem 3.1. If d is a noncomputable ∆0
2 degree, then d is not low for isomorphism. Hence,

no degree which bounds a noncomputable ∆0
2 degree is low for isomorphism.

Proof. Let D be a set of degree d and fix a ∆0
2 approximation 〈Ds〉 to D. We assume that

D0 = ∅. We build a pair of computable directed graphs G and H such that there is a unique
isomorphism α : G→ H and this isomorphism satisfies α ≡T D.

We begin by placing a single (n+ 2)-cycle in each of G and H for each n. Let xn denote
a fixed element of the (n+ 2)-cycle in G and add an element an with an edge from xn to an.
Similarly, let yn denote a fixed element of the (n+ 2)-cycle in H and add an element bn with
an edge from yn to bn. For a fixed n, we refer to these components as the n-th components
of G and H respectively. We can visualize these n-th components side by side as follows:

an bn

xn

OO

(n+2)-cycle

YY yn

OO

(n+2)-cycle

XX

8

Throughout the construction, we maintain the property that there is a unique isomorphism
between G and H and that this isomorphism matches up n-th components and sends xn to
yn. When n 6∈ Ds, the isomorphism will send an to bn, while if n ∈ Ds, the isomorphism
will not map an to bn. More specifically, the n-th components of G and H remain the same
until the first stage s′ (if any) at which n ∈ Ds′ . At stage s′, add new elements a′ and b′

(respectively) to the n-th component of G and H as follows.

an // a′ b′ // bn

xn

``AAAAAAAA

>>~~~~~~~~

(n+2)-cycle

YY yn

__@@@@@@@@

>>}}}}}}}}

(n+2)-cycle

XX

The unique isomorphism between G and H now sends an to b′ and a′ to bn. We leave the
n-th components unchanged until the next stage s′′ (if any) at which n 6∈ Ds′′ . At stage s′′,
add new elements a′′ and b′′ to the n-th components as follows.

a′′ // an // a′ b′ // bn // b′′

xn

``AAAAAAAA

OO >>~~~~~~~~

(n+2)-cycle

YY yn

__@@@@@@@@

OO >>}}}}}}}}

(n+2)-cycle

XX

We have restored the property that the unique isomorphism sends an to bn. From here,
the pattern repeats. Each time n enters Ds, we add a new element to each of the linear
chains above xn and yn to ensure that an cannot map to bn. When n leaves Ds, we add an
element to each linear chain to ensure that an maps to bn once again. Because D is ∆0

2, such
changes occur only finitely often for each n. Once Ds has stopped changing on n, the n-th
components of G and H stabilize and the unique isomorphism maps an to bn if and only if
n 6∈ D. Therefore, for any degree a, G ∼=a H if and only if d ≤ a.

Corollary 3.2. There are hyperimmune degrees, minimal degrees and GL1 degrees which are
not low for isomorphism.

Proof. These statements follow from Theorem 3.1 because every nonzero ∆0
2 degree is hyper-

immune, there are minimal ∆0
2 degrees, and there are low ∆0

2 degrees.

Corollary 3.3. The low-for-isomorphism degrees are not closed under join.

Proof. There are Cohen 2-generic degrees a and b such that a ∪ b ≥ 0′.

We can now observe that our result concerning Cohen 2-generics cannot be strengthened.
It is clear that there are Cohen 1-generics that are not low for isomorphism since there are
∆0

2 Cohen 1-generics. Furthermore, there are Cohen weak 2-generics that are not low for
isomorphism because there are Cohen weak 2-generics above 0′.

9

Theorem 3.4. Let X and Y be any pair of computably inseparable c.e. sets. No degree d
which can compute a separating set for X and Y is low for isomorphism.

Proof. The proof is similar to the proof of Theorem 3.1. Fix X and Y with their c.e. approx-
imations 〈Xs〉 and 〈Ys〉. We construct a pair of computable directed graphs G and H such
that every isomorphism between G and H can compute a separating set for X and Y and
such that every separating set for X and Y can compute an isomorphism.

At the start of the construction, for each n ∈ ω, G and H each contain an (n + 2)-cycle
(called the n-th components). Let xn (respectively yn) denote a fixed element of the (n+ 2)-
cycle in G (in H). Add two elements an and a′n (respectively bn and b′n) to the n-th component
of G (of H) with edges from xn to an and a′n (from yn to bn and b′n). We can visualize these
n-th components side by side as follows:

an a′n bn b′n

xn

``AAAAAAAA

>>}}}}}}}}

(n+2)-cycle

YY yn

``@@@@@@@@

>>~~~~~~~~

(n+2)-cycle

XX

As the construction proceeds, we maintain the property that any isomorphism between G and
H must match up n-th components and send xn to yn. However, there may be more than
one way to match up an and a′n with bn and b′n and these choices are independent for each n.
At the start, there are two options for each n; we can map an to bn and a′n to b′n or map an
to b′n and a′n to bn. As long as n 6∈ Xs ∪ Ys, we continue to allow both options. However, if n
enters Xs, we add elements a′′ and b′′ as follows:

an a′′ // a′n bn b′′ // b′n

xn

``AAAAAAAA

>>}}}}}}}}

OO

(n+2)-cycle

YY yn

``@@@@@@@@

>>~~~~~~~~

OO

(n+2)-cycle

XX

This forces the isomorphism to send an to bn. On the other hand, if n enters Ys, we add
elements a′′ and b′′ as follows:

an a′′ // a′n bn b′′oo b′n

xn

``AAAAAAAA

>>}}}}}}}}

OO

(n+2)-cycle

YY yn

``@@@@@@@@

>>~~~~~~~~

OO

(n+2)-cycle

XX

This forces the isomorphism to send an to b′n.
If α : G → H is an isomorphism (at the end of the construction), then {n | α(an) = bn}

contains X and is disjoint from Y . Therefore, if c can compute an isomorphism, then c can
compute a separating set, and hence G 6∼=∆0

1
H since X and Y are computably inseparable.

10

On the other hand, suppose S is a separating set. We use S to define an isomorphism
α : G → H. First, let α(xn) = yn and let α match the remainder of the (n + 2)-cycles in G
and H. If n ∈ S, set α(an) = bn and α(a′n) = b′n. If n 6∈ S, set α(an) = b′n and α(a′n) = bn.
Note that if n 6∈ X ∪Y , then these conditions completely define α as an isomorphism between
the n-th components. If n ∈ X ∪ Y , then we define α(a′′) = b′′ when the elements a′′ and
b′′ enter G and H. Because n ∈ X implies n ∈ S and because n ∈ Y implies n 6∈ S, these
conditions determine an isomorphism between the n-th components as required.

Corollary 3.5. There are hyperimmune-free degrees which are not low for isomorphism.

Proof. This corollary follows from the Hyperimmune-Free Basis Theorem for Π0
1 classes.

4 Measure

By the results of Sections 2 and 3, we know that the low-for-isomorphism degrees are large in
the sense of category and that these degrees neither contain nor are disjoint from the minimal
degrees, the hyperimmune-free degrees or the GL1 degrees. In this section, we show that
the low-for-isomorphism degrees are small in the sense of measure and are disjoint from the
Martin-Löf random degrees.

Theorem 4.1. The set of degrees which are low for isomorphism has measure 0. Furthermore,
no Martin-Löf random degree is low for isomorphism.

The rest of this section is devoted to the proof of this theorem. First, we show that the
set of degrees which are not low for isomorphism has measure 1. As noted in Section 1, it
suffices to show that the set of degrees which are not low for isomorphism has measure at
least 1/2. Second, we refine this construction to show that every Martin-Löf random degree
is not low for isomorphism.

We build (classically) isomorphic computable directed graphs G and H and a Π0
1 class

C ⊆ 2ω with the following properties.

(P1) G 6∼=∆0
1
H.

(P2) µ(C) ≥ 1/2.

(P3) If X ∈ C, then X computes an isomorphism from G to H.

Thus, C is a Π0
1 class of positive measure such that the graphs G and H witness that every

element of C is not low for isomorphism. To satisfy (P1), we meet the requirements

Re : Φe is not an isomorphism from G to H

for each e. To satisfy (P2), we ensure that the diagonalization strategy for Re does not remove
too much of the tree defining the Π0

1 class C. To satisfy (P3), we define a Turing functional Γ
such that for all X ∈ C, ΓX : G→ H is an isomorphism.

An e-component in G or H consists of an (e+ 3)-cycle with a coding node u distinguished
by an edge E(u, u). If e 6= e′, then an e-component is not isomorphic to an e′-component.

11

Furthermore, given two e-components, there is a unique isomorphism between them and this
isomorphism matches the coding nodes.

A tailed e-component consists of an e-component together with two additional nodes x0

and x1 and edges E(u, x0), E(x0, x1) and E(x1, x0) where u is the coding node of the e-
component. In other words, a tailed e-component is an e-component with a disjoint 2-cycle
attached to the coding node. At any stage of the construction, we can convert an e-component
into a tailed e-component by attaching a 2-cycle. We refer to this process as adding a tail to
the respective e-component. At certain points, we may refer to an e-component as untailed
to emphasize that it does not (yet) contain a tail.

The isomorphism type of G and H will consist of countably many untailed e-components
for every e and, for each requirement Re for which we actively diagonalize, countably many
tailed e-components. For any set X, we will have G ∼=X H if and only if X can compute a
bijection between the coding nodes in G and the coding nodes in H which correctly matches
the coding nodes of e-components with and without tails. That is, given such a bijection, X
can effectively extend the bijection to a full isomorphism by matching up the elements in the
corresponding cycles and in the corresponding tails.

We construct G and H in stages with Gs and Hs denoting these graphs at the end of
stage s. At stage 0, G0 and H0 contain infinitely many untailed e-components for each e.
We describe the intuition behind meeting a single Re and defining C and Γ. We consider the
interaction between these strategies for a single Re and then give the full construction.

To meet a single Re, we fix an e-component in G0 and use its coding node ae as a diag-
onalizing witness. If we never see a stage s at which Φe,s(ae) = b for some coding node b of
an e-component in Hs, then Re is trivially satisfied. If Φe,s(ae) = b for such a coding node b,
then we actively diagonalize by adding tails to an infinite coinfinite set of e-components in Hs

including the e-component coded by b. To maintain isomorphic structures, we also add tails
to an infinite coinfinite set of e-components in Gs but we do not add a tail to the e-component
coded by ae in Gs. This action meets Re, and we will not change the e-components in either
structure after this stage. Note that all the components in G and H exist at stage 0 and the
only change is to add tails to some of these components.

We define the Π0
1 class C by building a computable sequence of trees Ts ⊆ 2<ω such that

2<ω = T0 ⊇ T1 ⊇ · · · . We let T = ∩sTs and define C = [T]. (Recall that for any σ ∈ 2<ω, we
define [σ] to be the set of infinite binary strings X extending σ and for any subset S of 2<ω,
we define [S] to be the set of infinite binary strings X extending some σ ∈ S.) At stage s, we
say that we remove a string σ from T to mean that σ 6∈ Ts and hence implicitly that τ 6∈ Ts
for all τ extending σ. When removing σ from T at stage s, we do not assume that σ ∈ Ts−1.
That is, we could have σ 6∈ Ts−1 because some initial segment of σ was removed from T at an
earlier stage.

At stage 0, we define the Turing functional Γ so that for all X ∈ [T0], ΓX is an isomorphism
from G0 to H0. More specifically, for each e and each node σ ∈ T0 with |σ| = e+ 2, we define
Γσ so that it matches up the coding nodes for e-components in G0 in bijective correspondence
with the coding nodes for e-components in H0. For δ 6= σ with |δ| = e + 2, the matching
given by Γδ will not be the same as the matching given by Γσ.

These bijective matchings extend effectively to an isomorphism between G0 and H0. Be-

12

cause the only elements added at future stages are tails to some e-components in Gs or Hs, a
bijective match between coding nodes for e-components in G and H will extend effectively to
an isomorphism as long as it correctly matches the coding nodes for e-components with and
without tails.

As the construction proceeds, we will need to deal with the following conflict. Suppose
we see Φe,s(ae) = b and add tails to some e-components to meet Re. If we defined Γσ(ae) = b
for some σ ∈ Ts−1 then the action for Re will also diagonalize against ΓX being an isomor-
phism for any X extending σ. Therefore, we need to remove σ from T , which will reduce the
current measure of T by 2−|σ|. To make µ([T]) ≥ 1/2, we ensure that the strings removed
from T for different Re requirements are spread out enough to make the total measure re-
moved sufficiently small. Specifically, each Re will be allowed to remove at most 2−(e+2) much
measure.

We describe the full strategy for R0 before giving the general construction. R0 is allowed
to remove at most 1/4 measure from T , or in other words, it is allowed to remove at most
one string at level two from T . Let σi for i ≤ 3 denote the nodes at level 2 in T0 = 2<ω.

At the beginning of the construction, we label the coding nodes for the 0-components in
G0 by a0 (our distinguished diagonalizing witness) and cσij for j ∈ ω and i ≤ 3. Similarly, we
label the coding nodes for the 0-components in H0 by b0,i for i ≤ 3 and dσij for j ∈ ω and
i ≤ 3. We view these coding nodes in columns as follows.

G0 coding nodes: H0 coding nodes:
a0 cσ00 cσ10 cσ20 cσ30 b0,0 dσ00 dσ10 dσ20 dσ30

cσ01 cσ11 cσ21 cσ31 b0,1 dσ01 dσ11 dσ21 dσ31

cσ02 cσ12 cσ22 cσ32 b0,2 dσ02 dσ12 dσ22 dσ32

cσ03 cσ13 cσ23 cσ33 b0,3 dσ03 dσ13 dσ23 dσ33

cσ04 cσ14 cσ24 cσ34 dσ04 dσ14 dσ24 dσ34
...

...
...

...
...

...
...

...

For each i ≤ 3, we define Γσi to give a bijection between these coding nodes. First, for each
infinite column other than the i-th column, we match the coding nodes in order.

For ` 6= i, set Γσi(cσ`k) = dσ`k for all k ∈ ω.

Second, we match a0 with b0,i by setting Γσi(a0) = b0,i. Third, we use cσi0 , cσi1 and cσi2 to match
with {b0,0, b0,1, b0,2, b0,3} \ {b0,i} in order of the indices and then match the remainder of the
i-th infinite column in G with the i-th infinite column in H by shifting the indices.

Γσi(cσik) =


b0,k if k < i
b0,k+1 if i ≤ k < 3
dσik−3 if 3 ≤ k

13

To give one full picture, here is the bijection given by Γσ1 .

cσ00 7→ dσ00 cσ10 7→ b0,0 cσ20 7→ dσ20 cσ30 = dσ30

cσ01 7→ dσ01 a0 7→ b0,1 cσ21 7→ dσ21 cσ31 = dσ31
... cσ11 7→ b0,2

...
...

cσ12 7→ b0,3

cσ13 7→ dσ10

cσ14 7→ dσ11
...

As the construction proceeds, we wait for a stage s such that Φ0,s(a0) = b for some coding
node b in a 0-component in Hs. There are two possible cases we need to consider at such a
stage, and we will act differently in each case.

For the first case, suppose that Φe,s(a0) = dσ`j for some ` ≤ 3 and j ∈ ω. For each i 6= `, we
have defined Γσi(cσ`k) = dσ`k for all k ∈ ω. Therefore, without disrupting Γσi for i 6= `, we can
add tails to all 0-components in Gs with coding nodes of the form cσ`k and to all 0-components
in Hs with coding nodes of the form dσ`k . Because we add a tail to dσ`j but not to a0, we meet
Re. However, because Γσ` matches up some coding nodes of the form cσ`k with coding nodes
of the form b0,k′ (where k = k′ or k + 1 = k′), the bijection given by Γσ` no longer correctly
matches coding nodes with and without tails. Therefore, we remove σ` from T and we have
permanently won Re at the expense of only 1/4 measure.

For the second case, suppose that Φ0,s(a0) = b0,i for some i ≤ 3. In this case, we add a tail
to b0,i in Hs but do not add a tail to a0 in Gs. This action wins Re but because Γσi(a0) = b0,i,
the bijection given by Γσi is no longer correct and we must remove σi from T losing 1/4
measure. We need to add tails to other 0-components in Gs and Hs to ensure that each of
the other bijections Γσj for j 6= i continues to be a bijection.

Fix such a j ≤ 3. Consider the values of Γσj on the j-th infinite column of coding nodes
c
σj
k . Γσj either maps c

σj
i to b0,i (if j > i) or maps c

σj
i−1 to b0,i (if j < i). Fix kj such that

Γσj(c
σj
kj

) = b0,i. Since we add a tail to b0,i, we must add a tail to c
σj
kj

for Γσj to remain correct.

Now consider an arbitrary index n ≤ 3 with n 6= i, j. Because n 6= j, we have Γσn(c
σj
k) =

d
σj
k for all k. In particular, Γσn(c

σj
kj

) = d
σj
kj

so we need to add a tail to d
σj
kj

for Γσn to remain

correct. However, we have already defined Γσj(c
σj
kj+3) = d

σj
kj

so we have to add a tail to c
σj
kj+3

for Γσj to remain correct. This pattern repeats. Γσn(c
σj
kj+3) = d

σj
kj+3 so we add a tail to d

σj
kj+3

for the sake of Γσn . Then, Γσj(c
σj
kj+6) = d

σj
kj+3 forces us to add a tail to c

σj
kj+6 for the sake of

Γσj and so on.
Therefore, for each j ≤ 3 with j 6= i, we add tails to all coding nodes of the form c

σj
kj+3m

and d
σj
kj+3m for m ∈ ω. This action respects the definition of Γσj because Γσj(c

σj
kj

) = b0,i and

Γσj(c
σj
kj+3(m+1)) = d

σj
kj+3m. It also respects Γσn for n 6= i, j because Γσn(c

σj
kj+3m) = d

σj
kj+3m.

Thus, we can add tails to an infinite and coinfinite set of coding nodes in Gs and Hs in a
manner that preserves the bijections given by Γσj for j 6= i and that wins Re at the cost of
removing a single node σi with |σi| = 2 from T .

This completes the description of satisfying a single requirement R0 while building T . The
general construction proceeds by using nodes at level e + 2 of T to meet Re. The strategy

14

for Re will remove at most one node from T at level e + 2. In particular, there is no injury
between Re strategies for different indices e. We now give the full construction.

At stage 0, we set up the full construction as follows. For each fixed e ∈ ω, let 〈σe,i〉i<2e+2

be a list of the binary strings of length e+ 2. G0 will have infinitely many e-components with
the coding nodes denoted by ae and c

σe,i
j for j ∈ ω and i < 2e+2, and H0 will have infinitely

many e-components with the coding nodes denoted by be,i for i < 2e+2 and d
σe,i
j for j ∈ ω and

i < 2e+2. For each i < 2e+2, we make the following definitions for Γσe,i .

Γσe,i(ae) = be,i and Γσe,i(c
σe,`
k) = d

σe,`
k for ` 6= i and k ∈ ω, and

Γσe,i(c
σe,i
k) =


be,k if k < i
be,k+1 if i ≤ k < 2e+2 − 1
d
σe,i
k−(2e+2−1) if 2e+2 − 1 ≤ k

At stage s > 0, we actively diagonalize for each Re such that Φe,s(ae) converges to a coding
node for an e-component in Hs−1 and we have not yet actively diagonalized for Re. The action
we take depends on the output of Φe,s(ae).

Case 1. Suppose that Φe(ae) = d
σe,i
j for some j ∈ ω and i < 2e+2. Fix the value i.

• Remove σe,i from T .

• Add a tail to each e-component in Gs with coding node c
σe,i
` for ` ∈ ω.

• Add a tail to each e-component in Hs with coding node d
σe,i
` for ` ∈ ω.

Case 2. Suppose that Φe(ae) = be,i for some i < 2e+2. Fix the value i.

• Remove σe,i from T .

• Add a tail to the e-component in Hs with coding node be,i.

• For each j < 2e+2 with j 6= i, let kj be such that Γσe,j(c
σe,j
kj

) = be,i.

– Add a tail to each e-component in Gs with coding node c
σe,j
kj+`·(2e+2−1) for ` ∈ ω.

– Add a tail to each e-component in Hs with coding node d
σe,j
kj+`·(2e+2−1) for ` ∈ ω.

Lemma 4.2. G 6∼=∆0
1
H.

Proof. We need to show that each Re is satisfied. If we never see a stage s such that Φe,s(ae) =
b for a coding node b of an e-component in Hs−1, then Re is satisfied because ae is a coding
node for an e-component and Φe(ae) is not.

If we do see such a stage, fix the least s at which Φe,s(ae) = b for a coding node b of
an e-component in Hs−1. In both cases of the construction at stage s, the e-component of
Hs with coding node b is given a tail but the e-component of Gs with coding node ae is not
given a tail. Since Re has diagonalized at stage s, it never acts again and hence every tailed
e-component of G receives its tail at stage s. Therefore, ae remains the coding location of an
untailed e-component in G while Φe(ae) becomes the coding location of a tailed e-component
in H and hence Re is satisfied.

15

Lemma 4.3. The measure µ([T]) is at least 1/2.

Proof. Each requirement Re acts at most once and removes a single node σe,i from T when it
acts. Since |σe,i| = 2e+2, the total measure removed from [T] is bounded by

∑
e∈ω 2−e−2 = 1/2.

Therefore, µ([T]) ≥ 1− 1/2 = 1/2.

Lemma 4.4. For each X ∈ [T], ΓX is a bijection between the coding nodes in G and H which
correctly matches e-components with and without tails in these graphs.

Proof. Fix e. We claim that for every s and X ∈ [Ts], ΓX is a bijection between the coding
nodes for e-components in Gs and Hs which correctly matches the coding nodes with and
without tails. Because an e-component which has a tail in G or H receives this tail at some
finite stage, this claim suffices to establish the lemma.

We prove the claim by induction on s. When s = 0, fix an arbitrary set X (since [T0] = 2ω)
and index e. Fix the index n such that X � e + 2 = σe,n. The definitions for Γσe,n given at
stage 0 bijectively match the coding nodes for e-components in G0 with the coding nodes
for e-components in H0. Since no components are tailed at stage 0, this bijection correctly
matches those components with and without tails.

For the inductive case, assume the condition in the claim holds at stage s − 1. Fix a
set X ∈ [Ts] and an index e. We split into two cases. For the first case, assume that Re

does not act at stage s. In this case, no tails are added to e-components at stage s. Since
X ∈ [Ts] ⊆ [Ts−1], the induction hypothesis implies that ΓX correctly matches the coding
nodes for e-components with and without tails in Gs−1 and Hs−1. Since no e-components
receive a tail at stage s, this matching remains correct at stage s.

For the second case, assume that Re acts at stage s. Fix the index n such that X �
e+ 2 = σe,n. We split into subcases depending on whether Re acts in Case 1 or Case 2 of the
construction. Suppose that Φe(ae) = d

σe,i
j so Re acts in Case 1 of the construction. Because

X ∈ [Ts], we know that σe,n was not removed from T at stage s and hence n 6= i. The
e-components which receive tails in Gs and Hs are exactly those with coding nodes c

σe,i
` and

d
σe,i
` . However, since n 6= i, we have Γσe,n(c

σe,i
`) = d

σe,i
` for all `. Hence ΓX correctly matches

up the coding nodes which receive tails at stage s.
For the final subcase, assume that Φe(ae) = be,i so Re acts in Case 2 of the construction.

Since X ∈ [Ts], we know n 6= i. For each j < 2e+2 with j 6= i, fix kj as in Case 2. An
e-component receives a tail in Gs if and only if its coding node is c

σe,j
kj+`(2e+2−1) for some j 6= i

and ` ∈ ω. It receives a tail in Hs if and only if its coding node is be,i or d
σe,j
kj+`(2e+2−1) for some

j 6= i and ` ∈ ω. If j 6= n, then Γσe,n(c
σe,j
kj+`(2e+2−1)) = d

σe,j
kj+`(2e+2−1). If j = n, then Γσe,n(c

σe,n
kn

) =

be,i and Γσe,n(c
σe,n
k+(2e+2−1)) = d

σe,n
k . Therefore, Γσe,n(c

σe,n
kn+(`+1)(2e+2−1)) = d

σe,n
kn+`(2e+2−1) and the

bijection of coding nodes for e-components given by Γσe,n correctly matches up those receiving
tails at stage s.

This completes the proof that the measure of the degrees which are not low for isomorphism
is 1. In the remainder of this section, we show that this result can be strengthened to show
that no Martin-Löf random degree is low for isomorphism, and hence no degree which can
compute a Martin-Löf random is low for isomorphism. We recall the definition of Martin-Löf
randomness here (for a general reference, see [5] or [13]):

16

Definition 4.5. A Martin-Löf test is an effectively c.e. sequence 〈Vi〉 of subsets of 2<ω such
that µ[Vi] ≤ 2−i for all i. A real X is Martin-Löf random if for every Martin-Löf test,
X 6∈ ∩i[Vi].

The general construction of our Π0
1 class above is quite flexible. For example, we obtained

µ(C) ≥ 1/2 by assigning each Re the nodes at level e + 2. By spreading the requirements
out more sparsely in the tree, we could increase the measure of C. To build a sequence of Π0

1

classes that can be used to define the Σ0
1 classes that compose an Martin-Löf test, we use a

different type of flexibility.
Recall that λ denotes the empty sequence. As before, for a sequence τ ∈ 2<ω, we let

[τ] denote the set of all X such that τ v X. For a set X, we say that a triple (G,H,Γ)
witnesses that X is not low for isomorphism if G and H are computable graphs such that
G 6∼=∆0

1
H and Γ is a Turing functional such that ΓX is an isomorphism between G and H.

For example, in the general construction, the triple (G,H,Γ) consisting of the graphs and
the Turing functional built during the construction witnesses that each X ∈ C is not low for
isomorphism.

Think of the general construction above as building a Π0
1 class C contained in the clopen set

[λ]. More generally, we can define a [τ]-construction for any τ as follows. Run the construction
above in [τ] by starting with T0 = [τ] and assigning Re the nodes σe,i such that τ v σe,i and
|σe,i| = |τ |+ e+ 2. Let Gτ and Hτ denote the computable graphs constructed, let Sτ denote
the computable tree obtained at the end of the construction with these starting conditions
(i.e. Sτ is the tree denoted by T in the general construction), let Cτ = [Sτ] denote the
associated Π0

1 class and let Γτ denote the Turing functional built in this altered construction.
By the proofs given in the general construction, we have that µ(Cτ) ≥ 2−|τ |−1 (we lose at most
half the measure in [τ]), Gτ 6∼=∆0

1
Hτ (because we meet the Re requirements) and for every

X ∈ [Sτ] = Cτ , ΓXτ is an isomorphism between Gτ and Hτ . Therefore, the triple (Gτ , Hτ ,Γτ)
witnesses that each X ∈ Cτ is not low for isomorphism.

To show that no Martin-Löf random degree is low for isomorphism, we construct an
effective sequence of nested Π0

1 classes B0 ⊆ B1 ⊆ · · · given by an effective sequence of nested
trees B0 ⊆ B1 ⊆ · · · such that for every n, µ(Bn) ≥ 1 − 2−n+1 and for every X ∈ Bn, X is
not low for isomorphism. If A is Martin-Löf random, then A ∈ Bn for some n and hence A is
not low for isomorphism.

We construct Bn = [Bn] by induction on n. Let B0 = T and B0 = C = [T] from the general
construction. That is, we build B0 by a [λ]-construction, setting B0 = Sλ and B0 = [Sλ]. The
triple (Gλ, Hλ,Γλ) witnesses that each X ∈ B0 is not low for isomorphism.

To build B1, we run the [λ]-construction to build B0 except rather than removing σe,i
from Sλ when we actively diagonalize, we start a [σe,i]-construction inside the clopen set [σe,i]
which runs concurrently with the [λ]-construction. More formally, let I0 be the set of pairs
〈e, i〉 such that during the construction of B0, we actively diagonalize to meet Re by removing
σe,i from B0. Then,

B1 = B0 ∪
⋃
〈e,i〉∈I0

Sσe,i .

Equivalently, the complement of B1 is generated by the set of strings δ which are removed

17

during a [σe,i]-construction initiated by an active diagonalization process for B0. The set of
strings generating the complement of B1 is c.e., so B1 = [B1] is a Π0

1 class containing B0.
Because µ([Sσe,i]) ≥ 2−|σe,i|−1 and |σe,i| = e + 2, we have µ([Sσe,i]) ≥ 2−e−3. Since the

[σe,i]-construction works inside [σe,i] and µ([σe,i]|) = 2−e−2, the [σe,i]-construction removes at
most 2−e−3 much measure from [σe,i] during its construction. For each e, there is at most one
i such that 〈e, i〉 ∈ I0. Therefore,

µ(B1) ≥ 1−
∑
e∈ω

2−e−3 = 1− 1/4 = 3/4

as required.
Furthermore, if X ∈ B1, then either X ∈ B0 or X ∈ [Sσe,i] for some 〈e, i〉 ∈ I0. If X ∈ B0,

then (Gλ, Hλ,Γλ) witnesses that X is not low for isomorphism. If X ∈ [Sσe,i] for 〈e, i〉 ∈ I0,
then (Gσe,i , Hσe,i ,Γσe,i) witnesses that X is not low for isomorphism. This completes the
verification that B1 has the required properties.

The general induction strategy follows the same pattern in a nested fashion. Given Bn,
we define In to be the set of pairs 〈e, i〉 such that during the construction of Bn, we actively
diagonalize to meet Re by removing σe,i from Bn. Note that we only put 〈e, i〉 in In if the
construction of Bn actually removes σe,i as opposed to starting a [σe,i]-construction inside
[σe,i] as directed by the inductive construction of Bn.

To build Bn+1, we run the construction of Bn except rather than removing from σe,i from
Bn when 〈e, i〉 ∈ In, we start a [σe,i]-construction inside [σe,i]. Thus Bn+1 = Bn∪

⋃
〈e,i〉∈In Sσe,i .

Equivalently, the complement of Bn+1 is generated by the strings δ which are removed during
a [σe,i]-construction initialized by an active diagonalization process for Bn which actually
removed σe,i from Bn, i.e. when 〈e, i〉 ∈ In. Thus, Bn+1 = [Bn+1] is a Π0

1 class containing Bn.
By induction, the construction of Bn removes at most 2−n+1 measure, so∑

〈e,i〉∈In

µ([σe,i]) =
∑
〈e,i〉∈In

2−e−2 ≤ 2−n+1.

In the construction of Bn+1, rather than removing all of [σe,i] when 〈e, i〉 ∈ In, we start a
[σe,i]-construction which removes at most 2−|σe,i|−1 much measure. Therefore, in Bn+1, the
measure removed is bounded above by∑

〈e,i〉∈In

2−e−3 ≤ 2−1 · 2−n+1 = 2−(n+1)+1

so µ(Bn+1) ≥ 1− 2−(n+1)+1 as required.
Finally, if X ∈ Bn+1, then either X ∈ Bn or X ∈ [Sσe,i] for some 〈e, i〉 ∈ In. If X ∈ Bn, then

X is not low for isomorphism by induction. If X ∈ [Sσe,i], then (Gσe,i , Hσe,i ,Γσe,i) witnesses
that X is not low for isomorphism. This completes the verification that Bn+1 satisfies the
required properties and the proof that every Martin-Löf random is not low for isomorphism.

We note that this result cannot be strengthened in an obvious way. While no Martin-Löf
random is low for isomorphism, we can observe that there are computable randoms that are
low for isomorphism: every high degree contains a computably random real [14], and we know
that there is a high degree that is low for isomorphism by Corollary 2.3.

18

5 Low for linear order isomorphism

In this section, we consider the notion of low for isomorphism restricted to a class of com-
putable structures which are not computationally universal in the sense of Proposition 1.3.
We reproduce the analog of Theorem 3.4 for computable linear orders. The same techniques
suffice to prove the analog of Theorem 3.1 for linear orders, but, rather than give this proof,
we describe a stronger result which will appear in Suggs [18].

Definition 5.1. A degree d is low for LO-isomorphism if for every pair of computable linear
orders L0 and L1, L0

∼=d L1 if and only if L0
∼=∆0

1
L1.

Theorem 5.2. Let X and Y be any pair of computably inseparable c.e. sets. No degree d
which can compute a separating set for X and Y is low for LO-isomorphism.

Proof. Fix X and Y . It suffices to build isomorphic computable linear orders L0 and L1 such
that every separating set for X and Y can compute an isomorphism from these linear orders
and every isomorphism between them can compute a separating set for X and Y .

Let Q denote the countable dense linear order without endpoints and let Z denote the
order type of the integers. L0 and L1 will be computably decomposable as

L0 : Q + A0 + Q + A1 + Q + · · ·+ Q + An + Q + · · ·
L1 : Q +B0 + Q +B1 + Q + · · ·+ Q +Bn + Q + · · ·

where for each n, An ∼= Bn will either be isomorphic to Z or to a finite linear order. Thus
any isomorphism between these linear orders has to match up each pair An ∼= Bn and has to
match up the corresponding padding copies of Q. Because L0 and L1 computably decompose
into these forms, we know which points lie in each An or Bn component and which points lie
in each Q component. Thus, to compute an isomorphism, it suffices to uniformly compute
isomorphisms between An and Bn for each n. Conversely, every isomorphism computes a
uniform sequence of isomorphisms between An and Bn.

We build the sequence of orders An and Bn in stages as follows. At stage 0, An and Bn

are each a sequence of three points

An : α−1
n < an < α1

n

Bn : β−1
n < bn < β1

n.

At each stage s > 0, we proceed in one of three cases. First, if n 6∈ Xs ∪ Ys, then we add a
new pairs of points to each of An and Bn on the outside of the existing points. In this case,
at the end of stage s, we have

An : α−(s+1)
n < α−sn < · · · < α−1

n < an < α1
n < · · · < αsn < αs+1

n

Bn : β−(s+1)
n < β−sn < · · · < β−1

n < bn < β1
n < · · · < βsn < βs+1

n .

Note that if n 6∈ X ∪ Y , then An and Bn grow into copies of Z and it is possible for an
isomorphism between An and Bn to map an to bn or to map an to an element other than bn.

19

Second, if s is the first stage at which n ∈ Xs, then we do not add any points to An or Bn

at stage s or at any future stages. Therefore, the final forms of An and Bn are

An : α−sn < · · · < α−1
n < an < α1

n < · · · < αsn
Bn : β−sn < · · · < β−1

n < bn < β1
n < · · · < βsn.

In this case, An and Bn have finished growing and the unique isomorphism between them
maps an to bn.

Third, if s is the first stage at which n ∈ Ys, then we add one point on the right end of
An and one point on the left end of Bn. We do not add any further points to An or Bn at
future stages. Therefore, the final forms of An and Bn are

An : α−sn < · · · < α−1
n < an < α1

n < · · · < αsn < αs+1
n

Bn : β−(s+1)
n < β−sn < · · · < β−1

n < bn < β1
n < · · · < βsn.

In this case, An and Bn have finished growing and the unique isomorphism between them
maps an to β−1

n , and hence not to bn.
This completes the description of the construction of L0 and L1. By construction, if

f : L0 → L1 is an isomorphism, then {n | f(an) = bn} is a separating set for X and Y .
Therefore, each isomorphism computes a separating set.

Conversely, if U is a separating set, namely X ⊆ U and Y ∩ U = ∅, then we can build
an isomorphism computably in U by mapping an 7→ bn for all n ∈ U and an 7→ β−1

n for all
n 6∈ U . Since the successor and predecessor relations are uniformly computable in each An
and Bn (by construction), we can effectively extend this map across each pair An and Bn, and
since Q is computably categorical, we can extend the map across each padding Q component.
Therefore, each separating set computes an isomorphism.

A similar proof using Q padding blocks can be given for the following theorem.

Theorem 5.3. If d is a noncomputable ∆0
2 degree, then d is not low for LO-isomorphism.

Rather than give a proof of Theorem 5.3, we state a stronger forthcoming result.

Definition 5.4. A degree d is low for ω-isomorphism if for every pair L0, L1 of computable
copies of the linear order ω, L0

∼=d L1 if and only if L0
∼=∆0

1
L1.

Theorem 5.5 (Suggs [18]). If d is a noncomputable ∆0
2 degree, then d is not low for ω-

isomorphism.

Corollary 5.6 (Suggs [18]). A degree d is not low for ω-isomorphism if and only if d bounds
a noncomputable ∆0

2 degree.

20

6 Conclusion and questions

We have discussed the relationship of lowness for isomorphism to other properties that demon-
strate some sort of computational weakness such as minimality, hyperimmune-freeness, and
we have found that there is no clear relationship between lowness for isomorphism and any of
the properties mentioned: there are low-for-isomorphism degrees that possess each of these
properties and low-for-isomorphism degrees that don’t. In addition, we have found natural
classes of degrees that are low for isomorphism (for instance, the Cohen 2-generics) and nat-
ural classes of degrees that are not (for instance, the Martin-Löf randoms). We observe that
in each of these cases, our bound is tight: there is a weak 2-generic that is not low for isomor-
phism, while there is a computably random degree that is. However, we do not have a full
classification of the degrees that are low for isomorphism. Just as all of the known examples of
degrees of categoricity contain sets that are computably approximable in some way, it seems
that the nontrivial degrees that are low for isomorphism resist computable approximability
in a very strong way.

Question 6.1. Characterize the degrees that are low for isomorphism.

Perhaps the following approach to this question might be useful. Since the set of degrees
of categoricity is countable and no Martin-Löf random degree is low for isomorphism, we can
see that almost every degree (in terms of measure) is neither. It may make sense to try to
identify classes of degrees that fall into neither of these categories.

Question 6.2. Is there a natural class of degrees that contains no degrees of categoricity and
no low-for-isomorphism degrees?

One possibility may be the degrees that are Cohen 1-generic but not Cohen 2-generic:
these are not generic enough to guarantee lowness for isomorphism, and they are not so
computably approximable that they seem likely to be degrees of categoricity.

References

[1] Bernard A. Anderson and Barbara F. Csima, “Degrees that are not degrees of categoric-
ity,” to appear.

[2] George Barmpalias, Adam Day and Andrew Lewis, “Typicality in the Turing Degrees,”
to appear.

[3] Peter A. Cholak, Damir D. Dzhafarov, Jeffry L. Hirst and Theodore A. Slaman, “Generics
for computable Mathias forcing,” to appear.

[4] Barbara F. Csima, Johanna N.Y. Franklin and Richard A. Shore, “Degrees of categoricity
and the hyperarithmetic hierarchy,” Notre Dame Journal of Formal Logic 54 (2013), 215-
231.

[5] Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic Randomness and Complexity,
Springer–Verlag, Heidelberg, 2010.

21

[6] Ekaterina B. Fokina, Iskander Kalimullin and Russell Miller, “Degrees of categoricity of
computable structures,” Archive for Mathematical Logic 49 (2010), 51-67.

[7] Johanna N.Y. Franklin, “Lowness and highness properties for randomness notions,” in
Proceedings of the 10th Asian Logic Conference ed. T. Arai et al., World Scientific, 2010,
124-151.

[8] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore and Arkadii M. Slinko,
“Degree spectra and computable dimensions in algebraic structures,” Annals of Pure and
Applied Logic 115 (2002), 71-113.

[9] Denis R. Hirschfeldt and Richard A. Shore, “Combinatorial principles weaker than
Ramey’s Theorem for Pairs,” Journal of Symbolic Logic 72 (2007), 171-206.

[10] Denis R. Hirschfeldt, Richard A. Shore and Theodore A. Slaman, “The Atomic Model
Theorem and type omitting,” Transactions of the American Mathematical Society 361
(2009), 5805-5837.

[11] Carl G. Jockusch, Jr., “Degrees of generic sets,” in Recursion theory: its generalizations
and applications ed. F.R. Drake and S.S. Wainer, Cambridge University Press, 1980,
110-139.

[12] Manuel Lerman, Degrees of unsolvability, Springer–Verlag, Heidelberg, 1983.

[13] André Nies, Computability and randomness, Oxford University Press, Oxford, 2009.

[14] André Nies, Frank Stephan and Sebastiaan A. Terwijn, “Randomness, relativization and
Turing degrees,” Journal of Symbolic Logic 70 (2005), 515-535.

[15] Piergiorgio Odifreddi, Classical recursion theory, North-Holland, Amsterdam, 1989.

[16] Stephen G. Simpson, Subsystems of second order arithmetic, Springer–Verlag, Heidelberg,
1999.

[17] R.I. Soare, Recursively enumerable sets and degrees, Springer–Verlag, Heidelberg, 1987.

[18] J. Suggs, PhD thesis, University of Connecticut, in preparation.

22

